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USSR 

Received 21 January 1983 

Abstract. The N = 1 supersymmetric Yang-Mills theory is formulated analogously to the 
minimal N = 1 supergravity in the Ogievetsky-Sokatchev approach. The intrinsic super- 
space geometry of the N = 1 Yang-Mills is shown to be the complex geometry of embedding 
of the real superspace R4i4 = {x “‘, 6’. 8’ = (e”)’} into the extended complex one C41-M’Z = 

{ x r ,  0; =e”,  qL} ,  ( i  = 1 , .  . , , M ) ,  cpi being local coordinates on the group G‘, the 
complexification of gauge group G, and M = dim G. The N = 1 Yang-Mills prepotential 
is identified with Im cp; restricted to the hypersurface iW4l4. It takes values in the coset 
G‘/G, so the N = 1 Yang-Mills theory can be interpreted as a generalised nonlinear U 

model. The corresponding Cartan forms are defined and they are applied to the construc- 
tion of relevant geometric objects. We discuss also some new possibilities following from 
the suggested formulation of the theory. 

1. Introduction 

In superspace, supersymmetric Yang-Mills and supergravity theories reveal quite 
different geometric structures in comparison with those seen at the component level. 
Standard gauge potentials in superspace carry too many degrees of freedom even in 
a fixed gauge and, for this reason, cannot serve as the fundamental quantities. In any 
self-contained superfield gauge theory they are composite objects constructed from 
a lesser number of unconstrained superfields, prepotentials. The prepotentials proved 
to be a very useful concept; being directly related to the physical field content of a 
given theory, they provide an adequate realisation of its minimal invariance group 
and hence can be considered as natural carriers of the corresponding intrinsic super- 
space geometry. 

At present, the complete prepotential formulations exist for the N = 1 Yang-Mills 
theory (Ferrara and Zumino 1974, Salam and Strathdee 1974) and N = 1 supergravity 
(Ogievetsky and Sokatchev 1977, 1978a, b, Siegel and Gates 1979) and, at the 
linearised level, for their N = 2 counterparts (Mezincescu 1979, Gates and Siegel 
1982)t. The standard strategy to search for prepotentials is as follows. One starts 
with the ordinary differential geometry in superspace (see e.g. Wess 1981) and then 
solves proper constraints on covariant strengths, curvatures, torsions, etc. It is not so 
easy to guess what are the adequate constraints in one or another specific case, because 
of the lack of a general procedure (though some heuristic principles were suggested 

+ The quantities suggested by Sokatchev (1981) as the prepotentials of complete N = 2 supergravity seem 
not to be true ones as they are still subjected to certain constraints. 

@ 1983 The Institute of Physics 2571 
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here, e.g. the requirement of preserving certain representations of flat supersymmetry 
in the curved case (Gates et a1 1980)). 

Another approach, which seems to be of a greater universality, proceeds directly 
from exposing the minimal invariance group and intrinsic superspace geometry of a 
given theory. Once these are established, relevant prepotentials are expected to arise 
naturally within this framework as objects with a clear group and geometric meaning. 
Such a program has been carried out only for the N = 1 supergravity as yet. Ogievetsky 
and Sokatchev (1978a, b, 1980a, b) have shown that the geometry underlying the 
minimal N = 1 supergravity is the complex geometry of the real superspace R4I4 = 
{x m, e'", g'} embedded as a hypersurface into the complex chiral superspace C4'* = 
{x:, 8;). The geometric role of the corresponding prepotential Hm(x,  8, g) is to specify 
this embedding: 

R e x ?  = x m ,  e t  = elr, (e,) lr + -  =s;; - '  =el r ,  - .  Imx: =H"(x, e, 8). (1.1) 

The minimal invariance group of N = 1 supergravity is the supergroup of general 
analytic coordinate transformations of C4I2 (its divergenceless subgroup in the Einstein 
case). By the identification ( l . l ) ,  this supergroup has a natural realisation on 
{xm, e@, e", H"(x, 8, e)}. In the case of non-minimal N = 1 supergravities, R4I4 is 
embedded into a larger complex superspace C4I4 having two spinor dimensions in 
addition (Sokatchev 198 1). These extra spinor coordinates, being restricted to R4I4, 
constitute together with H m ( x ,  8, #) the full set of relevant prepotentials (Siege1 and 
Gates 1979). It is essential that in both cases, minimal and non-minimal, the prepoten- 
tials appear primarily as coordinates of certain complex superspaces. 

It is unknown which superfields play the role of prepotentials in gauge theories 
with N = 2 (except for N = 2 electrodynamics) and which geometries are associated 
with them (an off -shell manifestly supersymmetric superfield formulation is constructed 
as yet only for N = 2 Yang-Mills (Grimm et a1 1978)). No clear geometric interpreta- 
tion exists even for the N = 1 Yang-Mills prepotential V'(x, 8, #) (i is the index of 
the adjoint representation of the gauge group). At the same time, in order to unmask 
the minimal geometric structure of higher-N gauge theories (and supergravities as 
well) it seems necessary first to understand clearly the geometry of the text-book 
N = 1 case. 

This analysis is performed in the present paper?. We demonstrate that the intrinsic 
superspace geometry of the N = 1 Yang-Mills theory reveals a close similarity to that 
of minimal N = 1 supergravity. We start with the complexification G' of the gauge 
group G and define the extended chiral superspace C4+M12 = {x:, cpt, e:}, (i = 
1, . . . , M ) ,  where M = dim G and c p I  are local complex coordinates on G'. The 
N = 1 Yang-Mills theory turns out to be associated with the dynamics of embedding 
of R4I4 into C4+M12. The N = 1 prepotential V'(x, 8, e) coincides with Im cpt restricted 
to R4I4 and is introduced by equation ( 2 . 1 1 ~ )  analogous to the last of equations (1.1). 
This superfield has a simple meaning: it parametrises the coset space G'/G and hence 
specifies the position of the hypersurface R4I4 relative to the G'/G directions in C4+M'2,  
Re?; remains arbitrary and does not influence the dynamics. As a result, C4+M'2 
actually reduces to the quotient @4+M'2/G.  The fact that Vi(x, 8, g) takes values in 
the coset G'/G allows one to interpret the N = 1 Yang-Mills theory as a generalised 
nonlinear cr model. Hence, the powerful method of Cartan differential forms (Callan 

f Some of the results presented have already been published as a letter (Ivanov 1982). 
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er a1 1969, Volkov 1969, 1973, Ogievetsky 1974) may be applied to the construction 
of relevant invariants and other geometric objects. 

The organisation of this paper is as follows. In 0 2 we present the geometric 
derivation of the N = 1 Yang-Mills prepotential. This is similar for the cases of rigid 
and local supersymmetries. In 8 3, the corresponding Cartan forms are defined and 
it is explained how to construct from them standard geometric characteristics of the 
N = 1 Yang-Mills theory which automatically respect the conventional kinematic con- 
straints (Sohnius 1978). We begin with the case of flat geometry on R4I4 and then 
extend our study to the case of couplings with N = 1 supergravity. In the conclusion 
we indicate some consequences of the proposed geometric picture and make an attempt 
to realise what would be the analogue of the complex group G' in the N = 2 Yang-Mills 
theory. 

2. The geometric derivation of the N = 1 Yang-Mills prepotential 

2.1. 

We begin with defining the complex group G'. It is uniquely constructed by the initial 
gauge group G. Let G be a compact M-dimensional group with generators T ' ,  
(i = 1, . , . , M ) .  In the basis where T' are Hermitian they satisfy the commutation 
relations 

[T', Tk]  = ic'klT1, (2.1) 

c l k l  being real totally skew-symmetric structure constants. G' is defined as an M -  
dimensional complex group with M complex generators TL which constitute, together 
with their conjugates Tk = (TL)+,  the following Lie algebra: 

[Tk ,  T k ] =  ic'k'Tk, ( 2 . 2 ~ )  

(2.26) 

i k l  1 [TL, TL] = ic TL, 

[TL, Tk 1 = 0, 

or, in terms of 2 M  Hermitian generators 

[TI, Tk]  = icLk'T', [T' ,  A k ]  = icLkfAf, [A', A k ]  = -iclk'T', (2.3) 

where 

T' = T t  + Tk, A k  =i(T[ - T k ) .  (2.4) 

Besides, the group parameters associated with TZ and T k  are assumed to be mutually 
conjugated. The latter is equivalent to the requirement that the corresponding para- 
meters in the Hermitian basis (2.3), (2.4) are real. So, G' can equivalently be defined 
as the 2M-dimensional group over the field of real numbers with the Lie algebra 
formed by generators T', A k  satisfying the relations (2.3). In particular, if G = SU(n) 
then G'= SL(n, C). It follows from (2.2) that G" has (formally) the structure of the 
direct product G' = G L  x G R  with GL and GR = (GL)+ generated, respectively, by TL 
and Tk.  The initial group G with generators T k  appears as a diagonal in this product, 
and the remaining generators A k  span the real M-dimensional coset space G'/G. As 
is implied by the relations (2.3), the latter is symmetric. 

It is worth noting that G'  is non-compact; e.g. the last commutator in (2.3) differs 
in sign from the analogous commutator in the algebra of ordinary compact chiral 
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extension G x G of G. Due to non-compactness of G', any of its unitary representa- 
tions is infinite dimensional. For this reason, generators TI, A may be simultaneously 
chosen to be Hermitian ( T t ,  Tk mutually conjugated) provided they are realised by 
certain infinite-dimensional matrices. Our conclusions do not depend on the choice 
of representation, so in what follows we may regard T', A as Hermitian without loss 
of generality. 

Let us treat G' as a Riemannian manifold and introduce, in a vicinity of its identity 
element, local coordinates cpt, cpk = ( cp ; ) ' ,  using for definiteness the exponential 
parametrisation of G': 

g'((PL, (PR) = gL((PL)gR(qR) = exp(ip:Tk exp(b  ZTk 

= exp[i(Re cp:Tk +Im cp:Ak)]. (2.5) 
Note that Re c p ;  and Im cp: parametrise, respectively, the subgroup G and the coset 
G'/G. Now we define the superspace @4*M'2 playing the fundamental role in further 
consideration. It is the direct sum of ordinary chiral N = 1 superspace C4" = {x:, e t}  
and the group GL regarded as a complex M-dimensional manifold: 

(2 .6 )  
C4I2 may be flat or curved, depending on whether the rigid or local supersymmetry 
is dealt with. Since the left and right superspace coordinates x:, e t  and xK = (x;)', 
e$ = (0:)' are related by P-parity, it is natural to accept the same convention for c p l ,  
( P R :  

C4+M12 = {x:, et, c p l }  = C"'0GL. 

k 

(2.7) 
P P P 

cp1 ++cpk, Re c p ;  -+Re c p l ,  Im c p ;  -+ -1m cpt. 
Correspondingly, if, e.g., T' are scalars, A k  must be pseudoscalars: 

P P P 
T ;  ++ Tk, T i  -+ T i ,  A' -+ -Ai ,  (2.8) 

The next step is to define the action of G' in C4*M12. This group can naturally be 
Clearly, (2.8) is an automorphism of the algebra (2.2), (2.3). 

implemented as the group of left nonlinear translations of the coordinates cpt, v i :  

gL(AL)gL((PL) = ~ L ( ( P ; ( ( P L ,  AL)), gR(AR)gR((PR) = gR(V k( (PR,  A R ) )  (2.9) 

where A t ,  A k = ( A  are group parameters. To promote global Gc-transformations 
to the local ones, we assume that A t are arbitrary analytic functions over the superspace 

(2.10) 

The gauge group thus defined constitutes a semi-direct product with the supergroup 
realised on xLm, e t+ :  the Lie bracket of their two arbitrary transformations is a gauge 
transformation of the type (2.9). This product is contained as a subgroup in the 
supergroup of general analytic coordinate transformations of @4iM'2 (to be more exact, 
in its 'triangular' subgroup which leaves inva-riant the subspace C4"). As is implied 
by the relation (2.2b), the left and right components of the gauge group GFoc = GLloc x 
G R ~ ~ ~  commute with each other so that at the initial stage the 'left' and 'right' worlds 
are entirely disjointed (though conjugated). 

@412. 

A 1 = A 1 (XL, eL), A L  = ( A ~ ) + = A ~ ( x ~ ,  &). 

+ I n  the flat case, it may be the rigid Poincare or conformal supergroups, and in the curved case the 
infinite-dimensional supergroup of N = 1 supergravity. 
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2.2. 

We wish to Show that Grot is the invariance group of the N = 1 Yang-Mills theory 
and that the latter naturally emerges after extracting a special hypersurface in C4+M12. 
This hypersurface is the real superspace R4I4 = {x"', O w ,  Sw}  just as in the case of N = 1 
supergravity. An essential difference is that it now possesses purely internal degrees 
of freedom besides those represented by the axial superfield H"(x,  8, g), ( l . l ) ,  because 
of additional bosonic dimensions in C . Accordingly, the embedding conditions 
(1.1) should be supplemented with 2 M  conditions 

(2.11) 

where V' and U'  are real pseudoscalar and scalar superfields. Their transformation 
properties in G;b, are uniquely determined by those of cpt, cp:, (2.9). These superfields 
span, respectively, the coset space G'/G and the subgroup G. Hence, they are of 
the Goldstone type with respect to the corresponding G' transformations. We want 
G to be unbroken; then U'(x,  8,8) should be made to possess no dynamical manifes- 
tations. To achieve this, one may proceed just as in standard nonlinear (T models (see 
e.g. Volkov 1973, Gaillard and Zumino 1981) and require the theory to be invariant 
under the right gauge G -transformations 

(2.12) 

where A ' = A  ' ( x ,  8, are M real superparameters. Then cT'(x, 8, S) represent purely 
gauge degrees of freedom. The transformations (2.12) can also be represented in 
terms of the complex superfields cpL(x, 8, 8) = Uk(x, 8, 8 )+ iVk(x ,  8, 8), cpk(x, e, 8) = 
cpL+(x, 8, 8)= uk(x, 0, 3)-iVk(x, e, SI: 
exp(icp:TL) -exp(icp:T:) exp(iA'Tt), exp(icpkTk ) + exp(icpkTk ) exp(iA 'Tk ). 

(2.12a) 

From the geometric point of view, the invariance under (2.12) means that different 
G-directions in @4+M * are indistinguishable; the dynamics is required to depend only 
on the position of the hypersurface R4I4 with respect to directions spanning the coset 
space G'/G. In other words, it is the quotient @4+M'2/G which really enters after 
allowing for the gauge freedom (2.12). 

4+Ml2 

(a) Im c p ;  = ~ ' ( x ,  e, e), (b) Re c p ;  = U'(x,  8, g), 

exp[i(UkTk + VkAk)]  + exp[i(UkTk + VkAk)]  exp(iA'T') 

Upon imposing the natural gauge condition 

u ' ( x ,  e, S) = o (2.13) 
we are left with M pseudoscalar superfields V'(x, 8, s) which live in the coset G'/G 
and transform under GYOc according to the generic formula of nonlinear realisations 
(Coleman er a1 1969, Volkov 1969, 1973) 

exp[i(Re A :Tk + Im A [A )] exp(i VkA k ,  = exp(i Vk'A k ,  exp[iK'( V, AL)  T ' ]  (2.14) 

with A: as in (2.10). The transformation law of matter superfields @(x, 8, g) can be 
defined following the general prescriptions of the references cited above: 

(2.15) 
where F' is a proper matrix representation of G-generators (for brevity, indices of 
the representation are suppressed). 

Now, let us demonstrate that the law (2.14) is actually equivalent to the standard 
transformation law of the N = 1 Yang-Mills prepotential (Ferrara and Zumino 1974, 

~ ' ( x ,  e, 8) = exp(iK'F')Wx, e, S) 
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Salam and Strathdee 1974). To this end, we exploit first the automorphism (2.4) of 
the algebra (2.3) to rewrite (2.14) in another form: 

exp[i(Re h:Tk -1m ALA k ) ]  exp(-iV'A') = exp(-iV"A') exp(iK'T'). (2.14') 

The next step is to eliminate the factor exp(iK'T') from (2.14) and (2.14'). That yields 
one more possible form of the transformation of Vi (x, 8, e): 
exp[i(Re AFTk +Im A :Ak)] exp(2iVkAk) 

xexp[-i(Reh:Tk -ImA:Ak)]=exp(2iV"A'). (2.16) 

Finally, passing to the complex generators TL, Tk (by the formula (2.4)) and taking 
into account their commutativity we observe that (2.16) is equivalent to the following 
equation: 

(2.17) 

(or with Tk instead of TL). This is just what we are aiming at because TL fulfil the 
same commutation relations as Ti while the structure of V k '  in (2.14) does not depend 
on a particular choice of generators and is determined solely by their commutation 
relations. 

In fact, the standard form of the N = 1 prepotential transformation law (with Ti 
in place of TL ) is recovered by substituting for A '  in (2.16) its particular representation: 

= i p  (FE = F k ,  T: = 0). ( 2 . 1 8 ~ )  

This choice is non-self-conjugated, in accordance with the property that any finite- 
dimensional representation of the non-compact group G' is non-unitary. Through 
the identification ( 2 . 1 8 ~ )  or the conjugated one 

A; = - i p  ( T i  = 0, Tk = T k )  (2.186) 

any representation of G can be extended to that of the whole G'. Then, using the 
general connection between representations and nonlinear realisations (Coleman er 
a1 1969), one may relate any matter superfield with the standard nonlinear transforma- 
tion law (2.15) to the superfields transforming in GYOc linearly according to the 
representations (2.18a), (2.18b): 

@L = exp(i VAL)@ = exp(- v'P)Q,, 

exp(ihLT[) k exp(-2VkT:) exp(-iAkT:) = exp(-2Vk'T:) 

(PR = exp(i V'A;)Q, = exp(V'T')Q,, 

Q,; = exp(ih LTr)aL, = kxp(ih kT')Q,R. (2.19) 

These relations can be interpreted as describing the transition from the real basis in 
the group space of G' to its complex left and right bases, in a perfect analogy with 
the connection between real and complex bases in superspacet. Note that the left 
and right images of @ are necessarily complex even if Q, itself is real. However, no 
actual doubling of degrees of freedom occurs in this case, because the equivalency 
connection arises only between Q, and the real parts of Q,=, QR. The imaginary parts 
begin from the terms bilinear in Vk and Q,. The relations (2.19) were known earlier 
(Siege1 and Gates 1979, Grisaru 1981) but our consideration supplies them with a 
clear group-theoretical meaning. Note that the substitution of ( 2 . 1 8 ~ )  or (2.186) in 
the basic law (2.14) yields the transformation of the N = 1 Yang-Mills prepotential 

t To avoid a possible misunderstanding, we note that no correlation exists between choices of bases in G' 
and in superspace. 



N = 1 supersymmetric Yang-Mills theory 2577 

in the form given by Siege1 and Gates (1979): 

exp(iA LFk) exp(- V k F k )  = exp(- Vk F k )  exp(iK'F;'), 

exp(iA kfk) exp(VkFk)  = exp(Vk 'Fk)  exp(iK'F'). 
(2.20) 

Also, the invariance under right gauge G-transformations (2.12) reduces to the well 
known freedom of complexifying the prepotential: 

(2.21) exp(-V'F") -+ exp(- WIT') = exp(-V'F") exp(iA k F k ) ,  
e x p ( 2 ~ ' F " )  = exp(WkAFk)  exp(WkFk) .  (2.22) 

In fact, W'(x, 8, g), W''(x, 8, 8) coincide, up to a numerical factor, with the R4I4 
restrictions of initial complex group coordinates: 

w'(x,  e, S) = -icpt(x, e, 81, w'+(x, e, 8) = icp k (x, e, 8). 
The relation (2.22) can be looked upon as the invariant definition of Vk(x, 8, 8) (the 
RHS of (2.22) is manifestly invariant with respect to (2.12) or (2.21)). 

To summarise, we have derived the N = 1 Yang-Mills prepotential V'(x, 8, 8) from 
simple geometric and group principles similar to those constituting the basis of the 
Ogievetsky-Sokatchev formulation of minimal N = 1 supergravity. We have started 
with the extended group G' gauged in a proper way over the N = 1 chiral superspace 
C4'* and have identified V'(x, 8, g) with the parameters of the coset G'/G. 'I, e 
transformation law of V' has then been deduced by general recipes of group realisations 
in homogeneous spaces, based merely upon the commutation relations (2.2), (2.3). 
In previous studies, the transformation rule of V' and V' itself either were simply 
postulated (Ferrara and Zumino 1974, Salam and Strathdee 1974) or appeared as a 
solution of proper constraints on coyariant strengths (Sohnius 1978). The underlying 
complex group structure of N = 1 Yang-Mills remained implicit because the generators 
of G' appeared always in their particular form (2.18). 

2.3. 

In the remainder of this section we discuss some peculiarities of transformations 
(2.14), (2.15). With the restriction to the global case, these transformations display 
the conventional structure of nonlinear realisations: they are nonlinear if they belong 
to the coset G'/G (Re A; =0,  Im A; # 0) and become linear on the subgroup 
G (Re A[ f O ,  Im A: = O ) :  

(2.23) 

In the local case, due to the specific form of gauge parameters (2.10), the situation 
is more complicated. Superfunctions Re A L, Im A k are not quite independent, nullify- 
ing Re A ; reduces Im A ! to constants, and vice uersa. Choosing, e.g., the probe gauge 
functions to be 

Re A t l e = g = o = w i ( x ) ,  Im A t I s=g=o = 0 (2.24) 

(these span the subgroup of G;b, preserving the Wess-Zumino gauge) one observes 
that w ' ( x )  enter also into the coefficients of higher @-monomials in Re A;, Im A ; ,  
because of 8 dependence in the formula relating x L" to x (x L" = x  + iHm ( x ,  8, g)). For 
instance, in the flat case (H" (x, 8, 8) = eCr"'8) the whole Re A ;, Im A [ corresponding 

SGVk =ck"V'ReA;, K ' (  V, Re AL) = Re A I_. 
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to the choice (2.24) are 

Re A = w ( x  ) - +Ob%%& ( x  ), Im A L  = ei&'(x). (2.25) 

Thus, the local transformations belonging to the subgroup G are necessarily accom- 
panied by certain 'induced' local G'/G-transformations which depend on derivatives 
of gauge parameters of G. For this reason, even in the Wess-Zumino gauge 

vkZ (x, e, 8) = e r m &  '1, (x )  + ee& (x) + %%xi (x) + ee&TD (x) 

the transformation (2.15) of matter superfields reveals an explicit dependence on 
gauge fields: 

(2.26) 

However, one may always redefine 0 so as to bring it to transform in the conventional 
manner: 

= w ' (XI  - +ee@[& ' (XI + crk% ",x )a "w ' (~ ) ]  + 0 ( w 2 ) .  

0 + & = exp(~eet%am6LFk)0, &= exp[iwk(x)Fk]6. 

Finally, we notice that the non-compactness of G' has no explicit dynamical manifes- 
tation at the level of physical components. This is because the G' symmetry is 
spontaneously broken from the beginning to the compact symmetry with respect to 
G and, besides, the. Goldstone fields associated with this breaking are purely gauge 
degrees of freedom (they are contained in the superspin zero part of Vi).  In the wz 
gauge, the G'/G transformations of the remaining component fields have the form 
of ordinary gauge G-transformations and so are completely hidden. On the other 
hand, in any supersymmetric gauge they appear independently. Thus, the G'/G 
invariance can be treated as the consistency condition between ordinary gauge invari- 
ance and manifest supersymmetry. 

3. The Cartan form analysis of the N = 1 Yang-Mills theory 

3.1. 

It follows from the above consideration that the N = 1 Yang-Mills theory, from the 
group-theoretic point of view, is a kind of generalised nonlinear v model?. Indeed, 
Vi takes its values in the coset G'/G and thus provides the nonlinear realisation of 
G', in a complete analogy, say, with the pion in chiral dynamics which provides the 
nonlinear realisation of the chiral group SU(2) x SU(2) (exp(2iVkAk) is nothing but 
the 'chiral field' on the coset G'/G). Therefore, invariants and other geometric objects 
of N = 1 Yang-Mills should have an adequate expression in the universal language 
of Cartan differential forms which is of common use in theories with the nonlinearly 
realised symmetry (Callan er a1 1969, Volkov 1969, 1973, Ogievetsky 1974). In the 
present section, we construct the Cartan forms of the N = I Yang-Mills theory and 
show that they provide a convenient general basis for analysing the dynamical structure 
of this theory. Many empiric tricks applied earlier in constructing invariants, strengths, 
etc, get a clear group-theoretic meaning in the Cartan form approach. It possesses a 
great degree of automatism and, we hope, may work in gauge theories with higher N. 

+ An analogous fact for ordinary gauge theories has been established by Ivanov and Ogievetsky (1976a, b). 
In the supercase, the similarity with nonlinear U models is even more transparent and striking. 
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The basic forms in the present case are spinorial ones, and are introduced by the 
relations 

exp(--iVkAk)(ga, +iVb) exp(iVkAk) =i(wfiA'+RLT')=iiS1,, 

exp(-iVkAk)(g& +ip!) exp(iVkAk) = i (W2 '+f i ;T r )  =ioih. 

Here, 9,, G& are ordinary covariant s inor derivatives (they may correspond to the 
flat as well as curved geometries on R ) and Vb = Vb'TL, 'I? = (Vu)  = V k  T R  are 
spinor connections on the group GYoc : 

Vf;' = exp(iA:T:)"lrb exp(-ih:TL)+(l/i) exp(ih:Tk)% exp(-ihLT:), 
(3.2) 

pz' =exp(iAkTk)$% exp(-ihkTk + ( l / i )  exp(iAkTk)g& exp(-ihkTk). 

Their role is to compensate the non-commutativity of differential operators 9,, G& 
on the LHS of (3.1) with elements of gauge groups G L ~ ~ ~ ,  GRloc, respectively. We 
shall see later that Vf;, $2 can be constructed from V'(x, 8, g) itself. 

It is easy to check that under the gauge group (2.14), (3.2), the objects U;, ClL 
and their conjugates exhibit the standard transformation properties of Cartan forms: 

4p4 L + -  -Rt I 

3 . 3 )  

As follows from (3.3) and the commutation relations (2.3), the quantities w t ,  Wb, 
transform homogeneously 

(3.4) 

and can be interpreted as gauge-covariant spinor derivatives of the prepotential Vk. 
The remaining forms Rh, f i h  are the connections on the coset space G'/G: they 
transform according to the inhomogeneous law (3.3). These forms define the gauge- 
covariant spinor derivatives of matter superfields: 

v=@ = [ga, +isZhTt)@, V u @  = (Gw +ifikT1)@. (3.5) 

Now, let us come back to the discussion of the status of gauge superpotentials 
V,", v:. Fortunately, there is no need to associate with them independent degrees 
of freedom. These superfields can be taken as composite by imposing the manifestly 
covariant constraints 

(3.6) 

The equations (3.6) are algebraic with respect to V,", p:, therefore they can easily 
be solved to give 

I - 1  w a  = o m  = 0. 

(3.7a) 

(3.76) 

(in deriving (3.7), we have taken advantage of the automorphism (2.8)). Using the 
transformation of the prepotential in the form (2.17) and in the conjugated one, one 
may directly check that Vk, 7% thus arranged respect the original transformation 
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properties (3.2)t. After substituting (3.7) back into the basic relation (3.1) we are 
left with the spinor connections on the coset G'/G expressed solely in terms of 
v'(x, e, S) :  

These connections are fundamental quantities of which all the geometric characteristics 
of the theory can be built up: invariants, covariant strengths. This can be done 
following the standarad procedure (Sohnius 1978, Wess 1981). We find it instructive 
to repeat the derivation in the context of the proposed geometric interpretation of 
the theory. 

3.2. 

Till this point our consideration proceeded in the same way both for rigid and local 
supersymmetries. Now, we need the explicit form of spinor derivatives aa, ad. (to 
be more precise, it is the explicit form of their mutual anticommutator and commutator 
with the vector derivative which is really relevant). We begin with the flat case and 
choose the real basis in superspace R4I4 = { x a ,  e", 8"}. In this basis 

ga, = alae" - i(ag),, Gu = -alae" +i(ea),, (3.9) 
(3.10a) 

(3.106) 

Then, the gauge-covariant spinor derivatives V,, vu, (3.5) satisfy the following commu- 
tation relations: 

{Va, v,> = F a @ ,  {Tu, Tb} = iF& (3.1 la ,b)  

{vu, Tb} = 2i(a + R),B = 2ic+;b~,, ( 3 . 1 1 ~ )  

where Fa8, F u b ,  Rub are the G-algebra-valued two-forms expressed in terms of R,, 
fi, as 

Fa5 = ga + 9 8  f l u  + i{Ra, Rp}, (3.12) 

Fub = g &  fib + Gb fiu + i{&, fib}, (3.13) 

(3.14) 

The covariant strengths Fas, pub transform in G;b, homogeneously, according to the 
same law (3.4) as ut, 6:. Substitution of the explicit expressions (3.8) for the forms 
R,, fiu into (3.12), (3.13) yields 

- 

a8 , = $(aa fib + G,j R, + i{na, fib)). 

- 
Fap = Fu,j = 0 (3.15) 

that are just the constraints placed on the strengths in the traditional approach starting 
from the gauge potentials in superspace (Sohnius 1978, Wess 1981). The quantity 

f The possibility of covariant elimination of a number of gauge fields in nonlinear realisations in terms of 
the Goldstone fields was investigated in detail by Ogievetsky and the author (Ivanov and Ogievetsky 1975). 
We called it the inverse Higgs phenomenon. 
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flab is the vector connection 

fl u u b f l ,  ' =exp(-iV'A')(d+ V)=b exp(iV'A') (3.16) 

where 

v,B = i u z a ~ ~  =t(gaVz +G~v,L +i{V,L, Fz>)  + G ~ V ; )  (3.17) 

(the commutation relation (2.26) has been used in passing to the final form of (3.17)). 
Note that Yap takes its values in the algebra of the whole group G' while f lap takes 
values in the algebra of G. This can be seen by explicit calculation, with making use 
of the particular form (3.7) of Vb, e%. The composite gauge superfield V,(x, 8, 8) 
transforms under G;b, according to 

Vh = ~ ' ( A L ,  AR)V&-'(AL, AR)+(1/i)gc(AL, A R ) & & - ' ( ~ L ,  A R )  (3.18) 

thereby ensuring the standard transformation law for fl, : 

= exp(iK'T')(-ia, +R,) exp(-iK'T') (3.19) 

which is quite similar to the laws (3.3). For completeness, we quote the explicit 
expression of flab in terms of the prepotential V k  : 

f l u b  = exp(VkTk)[dub+ (1/2i)Gb(exp(-2 V'T'IGB, exp(2 ~ ' ~ ' ) ) ] e x p ( -  v ~ T ~ )  

= exp(- v ~ T ~ ) [ B ~ ~ +  ( 1 / 2 i ) ~ ~ ~ ( e x p ( 2  v ' T ' I ~ ~  exp(-2 v ' T ' ) ) ] ~ x ~ ( v ~ T ~ ) .  
(3.20) 

Note that one more conventional constraint 

Fa@ = $BU&+G,jflu +i{R,, fi,j}-2iuz,jflQ = O  (3.21) 

is fulfilled identically in the present approach, by the definition (3.14). 

Fop& =Vp.Rpd-i(d)pd.fls = i(+:dr(Vpfl, -d,fl ,)=iu;3, ,  

Let us now define the three-index quantity 

(3.22) 

where Vp is the spinor gauge-covariant derivative in the adjoint representation of G, 

Vp = 9 6  +i[& 1, (3.23) 

and the commutator or anticommutator is chosen depending on whether the object 
on which V, acts is even or odd. It is easy to see that under the transformations (3.3), 
(3.19) the strength (3.22) undergoes the homogeneous transformation 

Fb, = exp(iK'T')FB, exp(-iK'T'). (3.24) 

This strength and its conjugate F b ,  naturally arise when spinor gauge-covariant 
derivatives V,, v& are commuted with the vector one V, ( 3 . 1 1 ~ ) :  

LVa, vQl = [V&, V,] = iF&,. (3.25) 

Using the relations (3.15) one may check that FaPb satisfies the equations 

F a P P  . = - F  Pap7 . 

V u F p y b  + VpF,, ,  = 0. 

(3.26) 

(3.27) 

The first one implies that Fapb can be represented as 

F upp . = I  2 e a p W b  = ~ ~ , ~ [ ~ ~ n ~ ~ - i ( a ) ~ ~ f l ~ ] .  (3.28) 
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Then the second equation yields 

v u W p  =o.  (3.29) 

After passing to the right basis in the group space of G' by the second of formulae (2.19) 

@'! =exp(VkTk)Wd exp(-VkTk) (3.30) 

this condition reduces to the ordinary chirality condition: 

(3.31) - R  9, W, = exp( VkTk)VUw,  exp(- V k T k )  = 0. 

A direct calculation utilising the explicit expression for the form a,, (3.8), gives 

W! = ( 1 / 2 i ) ~ , 9 , ( e x p ( 2 ~ ' ~ ' ) ~ ,  e x p ( - 2 ~ ' ~ ' ) )  (3.32) 

that coincides with the standard expression for the covariant spinor strength of the 
N = 1 Yang-Mills theory. Using the relation (3.30) one easily establishes also the 
form of W, : 

(3.33) w, = (l/2i)V"V,(v,exp(-VkTk) exp ( V k T k ) ) .  

The tensor strength Fab is defined through the commutator of vector gauge-covariant 
derivatives: 

[v,, Vb]=$& =a,nb-abn,+i[n,, a b ] .  (3.34) 

(3.35) 

Now we discuss couplings to matter. In conventional nonlinear realisations, the 
minimal interactions of matter fields with the Goldstone fields are introduced as 
follows. One starts with a Lagrangian invariant under the vacuum stability subgroup 
and then replaces the ordinary derivatives by the covariant ones. In our case, the 
vacuum stability subgroup is the group of rigid G -transformations. Therefore, in 
order to implement couplings between matter superfields themselves and with the 
prepotential Vk in the manner invariant under the whole group GFoc, it is sufficient 
to make the change 9,, g&, a, + Vu, v,, V, in some superfield Lagrangian with global 
G symmetry. However, sometimes it is more convenient to bring superfields before- 
hand into the left or right complex Gc-bases with the help of the relations (2.19). All 
the geometric characteristics written above can be recast into these bases by formulae 
of the type (2.19): 

{Vk, vk, Vf} = exp(- VkTk){V,, v,, V,} exp( VkTk) ,  ( 3 . 3 6 ~ )  

{Vz, v!, V:} = exp( VkTk){Vu, v,, V,} exp(- VkTk)  (3.366) 

(here, the derivatives are assumed to act on everything to the right of them). The 
explicit form of covariant derivatives in the left basis is as follows: 

V b  = 9, + iVk'T', vk = g,,  Vk = a, +i&%bYk'T' (3.37) 

with 7"ki given by ( 3 . 7 ~ ) .  These operators are related to the corresponding quantities 
in the right basis by complex conjugation. The covariant strengths in the complex 
bases can be obtained directly by commuting relevant covariant derivatives between 

+We use the standard definitions (see e.g. Ogievetsky and Mezincescu 1975) uob = (1/2i)(a,4,-ab6.,), 

It is expressed in terms of W,, %', by the standard formula (Sohnius 1978)t 
- a b  & 

F Q b  =& i[V"(U,b),PWp ) bw']. 

= ( 1 / 2 i ) ( ~ ~ a b - ~ b a , ) = ( O , b ) + ,  (U, )Q~'  ( Z , ~ ) Q &  (1, 
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themselves; they all are expressed through Yk, pz, (3.7), and have a simpler appear- 
ance compared with those in the real basis (cf expressions (3.32) and (3.33)). Covariant 
derivatives vk, VI do not contain dependence on V'(x, 8, g), so one may impose on 
@L, @R the ordinary chirality conditions 

&@L = o + @; = QL ( x ~ ,  eL), (3.38) 

In the real basis, these constraints look more complicated: 

v,@= O +  = exp(V'T")aL(xL, eL), 

9a,@; = o+ @:=a:(xR, $R). 

o + @I1 = u p ( -  v'T')a;(xR, GR). 

(3.39) 

Accordingly, one has two equivalent forms of the invariant kinetic term of chiral 
superfields (Siege1 and Gates 1979, Grisaru 1981): 

(3.40) 2?& -Tr(@*'@) = T r ( a r  exp(2 V'T")aL). 

3.3. 

Now, let us discuss briefly the case of curved geometry on R4I4. We restrict our 
consideration to the standard minimal Einstein N = 1 supergravity. To repeat the 
above analysis, one needs the following commutation relations between curved 
counterparts Ga, G,, Ga of flat superspace derivatives (Wess and Zumino 1977, Grimm 
et a1 1979, Ogievetsky and Sokatchev 1980b): 

(3.41) 
- r  {a,, 601 = -Rap, {g,, 9,) = 2ia:&., = 2iGap, 

[&, 9 pp 1 = - T:,pp% - T:,& y - R a,,p. 

Here, the symbols T, R denote components of torsion and curvature (the latter takes 
values in the algebra sI(2, c ) )  and the conventional constraints are taken into account 
(we basically use the notation of Ogievetsky and Sokatchev (1980b)). For our purpose, 
it is necessary to know the explicit expressions of the components 

(3.42) 

is one of the basic superfields of minimal N = 1 supergravity. Also, we 

T&, : 
1 

Ra,.yS = - T ( E ~ + , S  + & a S & p y ) R ,  T:,p, = - $ E , $ $ ,  

where 
make use of one of the standard Bianchi identities (Grimm et a1 1979) 

Ra.po.vS +R v.Pp.aS = - G a ~ y , P p . s  - G y ~ a , P p . t i .  (3.43) 

All the basic gauge-covariant quantities of the flat case except for F,,,, (3.22), 
are generaised to the curved superspace simply by means of the change 9,, a,, 
aa +G,, Ga, Ga in the corresponding formulae. The strength F,,, gets a minor 
modification 

v PO,, = 6 p f i a a  -iGaafip +iTi ,aal ly+iT$, ,a l ly  (3.44) 

(that is owing to the non-zero torsion in the last of the relations (3.41)). Using 
(3.41)-(3.43), one may be convinced that Ppa, enjoys the same properties (3.26), 
(3.27), (3.29) as F,,, in the flat case (of course, the cha-nge V, + 6, should be made). 
A simple calculation yields for the spinor strength @, = E ~ ~ P ~ , ~  the well known 
expression (see e.g. Grisaru 1981) 

(3.45) k?, = (1/2i)(9"6, + E ) ( $ ,  exp(-VkTk) exp( VkTk))  
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which simplifies in the right G'-basis to 

ri.? = e x p ( v k ~ ' ) W c i  exp(-VkTk) 

= (1/2i)(&&~ + ~ ) ( e x p ( 2  v ~ T ~ ) G &  exp(-2 vkrk)) 
(3.46) 

Thus, we have demonstrated that all the relevant quantities of the N = 1 Yang-Mills 
theory can be obtained algorithmically starting solely with the structure relations (2.1) 
and the standard nonlinear realisation formulae (3.1) supplemented by the covariant 
constraints of the inverse Higgs phenomenon (3.6). Perhaps it would be interesting 
to relate this formalism to the Levi superform approach advocated by Schwarz (198 1) 
as the most adequate geometric language to deal with hypersurfaces in complex 
superspaces (see also Gayduk et a1 1981). 

Finally, we note that with respect to the right gauge group (2.20) all the covariant 
objects in the real G'-basis transform just as in GF,, but with arbitrary functions 
Ai(x, 8, s) instead of K'.  The corresponding quantities in the complex G'-bases are 
invariant under this gauge group (it is checked with the help of the representation 
(2.22)). For these reasons, any Lagrangian invariant under G%, turns out automatically 
invariant with respect to the right gauge G-transformations. The right gauge freedom 
can be used to represent all the basic quantities of the N = 1 Yang-Mills directly in 
terms of the R4I4 restrictions of original complex G'-coordinates cpL(x, 8, g), 
cpk(x, 8, J). For instance, the forms a,, a&, (3.8), can be gauge transformed to 

(3.8') 

4. Conclusion 

The above consideration suggests several new interesting possibilities for the N = 1 
Yang-Mills theory. First, the fact that this theory is a kind of the nonlinear u model 
on the coset G'/G raises the problem of constructing an appropriate linear u model, 
with G' as the vacuum stability group. Since any unitary representation of G' is 
infinite dimensional (G' is non-compact), such a u model should naturally give rise 
to infinite-dimensional field multiplets. The standard N = 1 Yang-Mills theory would 
arise within this model dynamically, as a result of appearance of non-zero vacuum 
expectation values of certain components of the original linear multiplet breaking 
G'-symmetry to G-symmetry. In fact, using general theorems on the relation between 
representations and nonlinear realisations (Coleman et a1 1969), one may construct 
out of Vi(x, 8, g) alone any representation of G' including infinite-dimensional unitary 
ones, provided they contain an invariant of G. The possibility to construct such 
composite linear G'-multiplets can be thought of as a group-theoretic argument in 
favour of the existence of the dynamical phase with unbroken G'-symmetry in the 
N = 1 Yang-Mills theory. An interesting point is the inevitable presence of G- 
invariant (i.e. 'colourless') states in these multiplets. 

Another line of thinking concerns the geometric analogy between the N = 1 
Yang-Mills and N = 1 supergravity. A natural hypothesis is that these theories admit 
a unification within a larger theory of the Kaluza-Klein type. One may treat 
Re cp: = c p i  as an independent coordinate like x m  in ( l . l ) ,  choose the base superspace 
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to be R4+M'4 = { x m ,  vi, e', p }  instead of Iw4I4, and construct a (4+M)-dimensional 
extension of minimal N = 1 supergravity by embedding Iw484tM'4 into @4+M'2 . The 
standard theory is expected to be reproduced as the lowest order in a proper expansion 
in 'pi. 

However, the most exciting and urgent task is to extend the geometric picture 
described here to higher-N gauge theories, at least to the case of N = 2. The necessity 
to complexify G in the N = 1 case can be related to the fact that the fundamental 
superspace of N = 1 supersymmetry is the complex superspace C4I2. Its true analogue 
for N = 2 seems to be a superspace, bosonic coordinates of which form a quaternion 
(Galperin et a1 1981, 1982). So, in the N = 2 case one may, instead of the extension 
T k  -+ {T', iT'}, try an extension of the type Tk -+ {T', 4i @ T', . . .} where q i  (i = 
1 ,2 ,3 )  are imaginary quaternion units transforming as a triplet with respect to the 
automorphism group SU(2) of the N = 2 superalgebra. The relevant prepotential 
should then acquire an additional triplet index. That is just what happens in the N = 2 
electrodynamics (Mezincescu 1979). Work along these lines is now in progress. We 
believe that the elucidation of the intrinsic superspace geometric structure of the 
N = 2 Yang-Mills theory will essentially help in understanding the analogous structure 
of N = 2 supergravity. 
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